This project uses Trigger.dev v4 (which is currently in beta as of 28 April 2025). If you want to
run this project you will need to upgrade to v4 .
Overview
Convert documents to markdown using Microsoft’s MarkItDown library. This can be especially useful for preparing documents in a structured format for AI applications.
Prerequisites
Features
A Trigger.dev task which downloads a document from a URL and runs the Python script which converts it to markdown
A Python script to convert documents to markdown using Microsoft’s MarkItDown library
Uses our Python build extension to install dependencies and run Python scripts
GitHub repo
View the project on GitHub Click here to view the full code for this project in our examples repository on GitHub. You can
fork it and use it as a starting point for your own project.
The code
Build configuration
After you’ve initialized your project with Trigger.dev, add these build settings to your trigger.config.ts
file:
import { pythonExtension } from "@trigger.dev/python/extension" ;
import { defineConfig } from "@trigger.dev/sdk/v3" ;
export default defineConfig ({
runtime: "node" ,
project: "<your-project-ref>" ,
// Your other config settings...
build: {
extensions: [
pythonExtension ({
// The path to your requirements.txt file
requirementsFile: "./requirements.txt" ,
// The path to your Python binary
devPythonBinaryPath: `venv/bin/python` ,
// The paths to your Python scripts to run
scripts: [ "src/python/**/*.py" ],
}),
],
} ,
}) ;
Learn more about executing scripts in your Trigger.dev project using our Python build extension
here .
Task code
This task uses the python.runScript
method to run the markdown-converter.py
script with the given document URL as an argument.
src/trigger/convertToMarkdown.ts
import { task } from "@trigger.dev/sdk/v3" ;
import { python } from "@trigger.dev/python" ;
import * as fs from "fs" ;
import * as path from "path" ;
import * as os from "os" ;
export const convertToMarkdown = task ({
id: "convert-to-markdown" ,
run : async ( payload : { url : string }) => {
const { url } = payload ;
// STEP 1: Create temporary file with unique name
const tempDir = os . tmpdir ();
const fileName = `doc- ${ Date . now () } - ${ Math . random (). toString ( 36 ). substring ( 2 , 7 ) } ` ;
const urlPath = new URL ( url ). pathname ;
const extension = path . extname ( urlPath ) || ".docx" ;
const tempFilePath = path . join ( tempDir , ` ${ fileName }${ extension } ` );
// STEP 2: Download file from URL
const response = await fetch ( url );
const buffer = await response . arrayBuffer ();
await fs . promises . writeFile ( tempFilePath , Buffer . from ( buffer ));
// STEP 3: Run Python script to convert document to markdown
const pythonResult = await python . runScript ( "./src/python/markdown-converter.py" , [
JSON . stringify ({ file_path: tempFilePath }),
]);
// STEP 4: Clean up temporary file
fs . unlink ( tempFilePath , () => {});
// STEP 5: Process result
if ( pythonResult . stdout ) {
const result = JSON . parse ( pythonResult . stdout );
return {
url ,
markdown: result . status === "success" ? result . markdown : null ,
error: result . status === "error" ? result . error : null ,
success: result . status === "success" ,
};
}
return {
url ,
markdown: null ,
error: "No output from Python script" ,
success: false ,
};
},
});
Add a requirements.txt file
Add the following to your requirements.txt
file. This is required in Python projects to install the dependencies.
The Python script
The Python script uses MarkItDown to convert documents to Markdown format.
src/python/markdown-converter.py
import json
import sys
import os
from markitdown import MarkItDown
def convert_to_markdown ( file_path ):
"""Convert a file to markdown format using MarkItDown"""
# Check if file exists
if not os.path.exists(file_path):
raise FileNotFoundError ( f "File not found: { file_path } " )
# Initialize MarkItDown
md = MarkItDown()
# Convert the file
try :
result = md.convert(file_path)
return result.text_content
except Exception as e:
raise Exception ( f "Error converting file: { str (e) } " )
def process_trigger_task ( file_path ):
"""Process a file and convert to markdown"""
try :
markdown_result = convert_to_markdown(file_path)
return {
"status" : "success" ,
"markdown" : markdown_result
}
except Exception as e:
return {
"status" : "error" ,
"error" : str (e)
}
if __name__ == "__main__" :
# Get the file path from command line arguments
if len (sys.argv) < 2 :
print (json.dumps({ "status" : "error" , "error" : "No file path provided" }))
sys.exit( 1 )
try :
config = json.loads(sys.argv[ 1 ])
file_path = config.get( "file_path" )
if not file_path:
print (json.dumps({ "status" : "error" , "error" : "No file path specified in config" }))
sys.exit( 1 )
result = process_trigger_task(file_path)
print (json.dumps(result))
except Exception as e:
print (json.dumps({ "status" : "error" , "error" : str (e)}))
sys.exit( 1 )
Testing your task
Create a virtual environment python -m venv venv
Activate the virtual environment, depending on your OS: On Mac/Linux: source venv/bin/activate
, on Windows: venv\Scripts\activate
Install the Python dependencies pip install -r requirements.txt
. Make sure you have Python 3.10 or higher installed.
Copy the project ref from your Trigger.dev dashboard and add it to the trigger.config.ts
file.
Run the Trigger.dev CLI dev
command (it may ask you to authorize the CLI if you haven’t already).
Test the task in the dashboard by providing a valid document URL.
Deploy the task to production using the Trigger.dev CLI deploy
command.
MarkItDown Conversion Capabilities
Convert various file formats to Markdown:
Office formats (Word, PowerPoint, Excel)
PDFs
Images (with optional LLM-generated descriptions)
HTML, CSV, JSON, XML
Audio files (with optional transcription)
ZIP archives
And more
Preserve document structure (headings, lists, tables, etc.)
Handle multiple input methods (file paths, URLs, base64 data)
Optional Azure Document Intelligence integration for better PDF and image conversion
Learn more about using Python with Trigger.dev
Python build extension Learn how to use our built-in Python build extension to install dependencies and run your Python
code.
Responses are generated using AI and may contain mistakes.